James Mochizuki-Freeman

Hi there. This is an introduction.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum vehicula ante a laoreet. Nunc auctor odio commodo odio scelerisque, vitae auctor ipsum pellentesque. Praesent id metus neque. Nunc commodo lorem quis tempus dapibus. Donec lobortis dui quis dignissim pharetra. Duis sagittis ligula sit amet ex blandit, ac lacinia tortor pharetra. Morbi sed felis ipsum. Maecenas non pulvinar turpis. Curabitur feugiat turpis pellentesque sapien tristique tincidunt.

Subsection

Sed cursus dignissim quam, in accumsan nisi elementum at. Duis orci erat, posuere eu euismod at, consectetur id quam. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce sit amet elit egestas justo aliquam accumsan ut in risus. Sed eu eros elit. Nullam tincidunt et tortor malesuada rhoncus. Aenean tempor ante lorem. Phasellus ullamcorper finibus pharetra. Praesent odio est, maximus nec imperdiet tincidunt, faucibus quis mauris. Duis congue elit leo, id viverra mi consectetur vel. In semper quis felis a ultrices. Donec fermentum nulla arcu, a tempus diam luctus ut. Integer sed justo ipsum.

Nunc efficitur fermentum iaculis. Nam bibendum posuere maximus. Mauris at dictum ligula. Nullam efficitur mauris euismod massa euismod, ac congue elit eleifend. Praesent efficitur dapibus nunc. Aliquam eu libero in neque feugiat posuere at a urna. Duis vel pulvinar lorem, ac tincidunt odio. Suspendisse elit tellus, sodales ac quam quis, mattis porttitor elit. Quisque id dolor suscipit, molestie ante a, porttitor lorem. Etiam eget elit et elit tincidunt viverra.

Publications

M. R. Kabir, J. Mochizuki-Freeman, and Z. Tiganj, "Deep reinforcement learning with time-scale invariant memory," accepted to The 39th Annual AAAI Conference on Artificial Intelligence, 2025, arXiv:2412.15292.

[pdf] J. Mochizuki-Freeman, M. R. Kabir, and Z. Tiganj, "Incorporating a cognitive model for evidence accumulation into deep reinforcement learning agents," in Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 46, 2024, pp. 5370-5376.

[pdf] J. Mochizuki-Freeman, S. S. Maini, and Z. Tiganj, "Characterizing neural activity in cognitively inspired RL agents during an evidence accumulation task," in 2023 International Joint Conference on Neural Networks (IJCNN), 2023, pp. 01-09, doi: 10.1109/ijcnn54540.2023.10191578.

[pdf] S. S. Maini, J. Mochizuki-Freeman, C. S. Indi, B. G. Jacques, P. B. Sederberg, M. W. Howard, and Z. Tiganj, "Representing Latent Dimensions Using Compressed Number Lines," in 2023 International Joint Conference on Neural Networks (IJCNN), 2023, pp. 1-10, doi: 10.1109/ijcnn54540.2023.10190998.

[pdf] J. Mochizuki-Freeman, M. R. Kabir, M. Gulecha, and Z. Tiganj. "Geometry of abstract learned knowledge in deep RL agents," in Proceedings of the 2nd NeurIPS Workshop on Symmetry and Geometry in Neural Representations, in Proceedings of Machine Learning Research, vol. 228, 2024, pp. 405-424.